Polycomb enables primitive endoderm lineage priming in embryonic stem cells
نویسندگان
چکیده
Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver of these coordinated changes, known as lineage priming, in a process that exploits novel polycomb activities. We find that intragenic levels of the polycomb mark H3K27me3 anti-correlate with changes in transcription, irrespective of the gene's developmental trajectory or identity as a polycomb target. In contrast, promoter proximal H3K27me3 is markedly higher for PrEn priming genes. Consequently, depletion of this modification stimulates the degree to which ESCs are primed towards PrEn when challenged to differentiate, but has little effect on gene expression in self-renewing ESC culture. These observations link polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision.
منابع مشابه
The role of FGF/Erk signaling in pluripotent cells.
Fibroblast growth factor (FGF) signaling controls fundamental processes such as proliferation, differentiation and migration throughout mammalian development. Here we discuss recent discoveries that implicate FGF/Erk signaling in the control of pluripotency and lineage specification in several different stem cell states, including the separation of pluripotent epiblast and primitive endoderm in...
متن کاملOct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst
The transcription factor Oct4 is required in vitro for establishment and maintenance of embryonic stem cells and for reprogramming somatic cells to pluripotency. In vivo, it prevents the ectopic differentiation of early embryos into trophoblast. Here, we further explore the role of Oct4 in blastocyst formation and specification of epiblast versus primitive endoderm lineages using conditional ge...
متن کاملAggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation.
When embryonic stem cells are allowed to aggregate, the outer layer of the aggregated spheres (referred to as embryoid bodies) differentiates into primitive endoderm. This initial specification of cell lineage facilitates further differentiation of the inner mass of the embryoid bodies. These processes are considered to recapitulate early embryonic development from the blastocyst stage to the e...
متن کاملAlteration of Differentiation Potentials by Modulating GATA Transcription Factors in Murine Embryonic Stem Cells
Background. Mouse embryonic stem (ES) cells can be differentiated in vitro by aggregation and/or retinoic acid (RA) treatment. The principal differentiation lineage in vitro is extraembryonic primitive endoderm. Dab2, Laminin, GATA4, GATA5, and GATA6 are expressed in embryonic primitive endoderm and play critical roles in its lineage commitment. Results. We found that in the absence of GATA4 or...
متن کاملBulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells
In vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates early aspects of human embryogenesis, but the underlying processes are poorly understood and controlled. Here we show that modulating the bulk cell density (BCD: cell number per culture volume) deterministically alters anteroposterior patterning of primitive streak (PS)-like priming. The BCD in conjunction with the c...
متن کامل